Antimony-doped graphene nanoplatelets

نویسندگان

  • In-Yup Jeon
  • Min Choi
  • Hyun-Jung Choi
  • Sun-Min Jung
  • Min-Jung Kim
  • Jeong-Min Seo
  • Seo-Yoon Bae
  • Seonyoung Yoo
  • Guntae Kim
  • Hu Young Jeong
  • Noejung Park
  • Jong-Beom Baek
چکیده

Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb(3+) and Sb(5+)) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties

For the utilization of graphene in various energy storage and conversion applications, it must be synthesized in bulk with reliable and controllable electrical properties. Although nitrogen-doped graphene shows a high doping efficiency, its electrical properties can be easily affected by oxygen and water impurities from the environment. We here report that boron-doped graphene nanoplatelets wit...

متن کامل

Nitrogen-doped graphene nanoplatelets from simple solution edge-functionalization for n-type field-effect transistors.

The development of a versatile method for nitrogen-doping of graphitic structure is an important challenge for many applications, such as energy conversions and storages and electronic devices. Here, we report a simple but efficient method for preparing nitrogen-doped graphene nanoplatelets via wet-chemical reactions. The reaction between monoketone (C═O) in graphene oxide (GO) and monoamine-co...

متن کامل

Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets.

Commercial graphene nanoplatelets in the form of optically transparent thin films on F-doped SnO(2) (FTO) exhibited high electrocatalytic activity toward I(3)(-)/I(-) redox couple, particularly in electrolyte based on ionic liquid (Z952). The charge-transfer resistance, R(CT), was smaller by a factor of 5-6 in ionic liquid, compared to values in traditional electrolyte based on methoxypropionit...

متن کامل

Fe@N‐Graphene Nanoplatelet‐Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction

An activated carbon nanofiber (CNF) is prepared with incorporated Fe-N-doped graphene nanoplatelets (Fe@NGnPs), via a novel and simple synthesis approach. The activated CNF-Fe@NGnP catalysts exhibit substantially improved activity for the oxygen reduction reaction compared to those of commercial carbon blacks and Pt/carbon catalysts.

متن کامل

LbL: Layer-by-Layer; GOx: Glucose Oxidase; G-chitosan: Reduced Graphene Oxide Nanoplatelets Functionalized with Chitosan; GPSS: Reduced Graphene Oxide Nanoplatelets Functionalized with Poly(Styrenesulfonic Acid)

This work aims the functionalization of reduced graphene oxide nanoplatelets with chitosan (G-chitosan) and also with poly(styrenesulfonic acid) (GPSS), thus forming stable, dispersed aqueous solutions. G-chitosan and GPSS solutions allowed the layer-by-layer (LbL) film formation with glucose oxidase (GOx), establishing multilayered nanostructures with elevated control in thickness and morpholo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015